UNIT-4 >>CURRENT MIRROR AND OPAMP DESIGN SUBJECT-ANALOG CIRCUIT LECTURE-1>>CURRENT MIRROR BJT CURRENT MIRROR The basic BJT current mirror is shown in fig Consider β is high and neglect base current I R_{EF} is passed through Q₁ and the corresponding voltage is V_{BE}. V_{BE} is applied voltage between base and emitter of Q₂. Now, Q_2 is matched to Q_1 , i.e. same relative area of emitter-base function and having equal collector current. Here, Q_2 is in active mode until V_0 is 0.3v or higher than emitter voltage. For obtaining the current transfer ratio, it is required to consider m times relative area of emitter-base junction (EBJ). $I_0 = m I_{REF}$ The current transfer ratio, I_{O} ÷ I_{REF} = I_{s2} ÷ I_{s1} =Area of EBJ OFQ₂÷ Area of EBJ OFQ₁ From the node equation at collector of Q_1 , $I_{REF} = I_C = 2I_C/\beta$ Since $I_0 = I_C$ $I_O \div I_{REF} = I_C/I_C(1+2I_C/\beta)$ ## **BASE CURRENT MIRROR** A bipolar current mirror with a current transfer ratio is less dependent on β than that of simple current mirror. This reduces dependency on β and is achieved by using transistor Q_3 . The Q_3 supplies the base current to the Q_1 and Q_2 . The sum of base currents divided by (β_3) resulting in much smaller error current, that has to be supplied by I_{REF} . Let us assume Q and Q are matched and having equal collector current. A node equation at node x gives $$I_{REF} = I_{C} [1+2/\beta(\beta+1)]$$ As, $I_0=I_C$ The current transfer ratio of the mirror will be $$I_o/I_{REF}=2/1+\beta(\beta+1)=1/1+2/\beta^2$$ eq.3 Eq.3 shows that the error due to finite β has been reduced from $2/\beta$ to $2/\beta^2$ However, the output resistance (R_0) remains approximately equal to that of simple mirror. IF I_{REF} is not present, then we connect node x to the power supply V_{cc} trough resistor R, then $I_{REF=}Vcc-V_{BE1}-V_{BE3}/R$ ## **CHARACTERISTICS OF CURRENT MIRROR: -** - More accurate current transfer ratio. - Highly output resistance.